

FRIB Introduction and FRIB Controls

Sheng Peng
Controls & Computing Department Manager

FRIB – a DOE-SC National User Facility Enabling Scientists to Make Discoveries

Properties of nucleonic matter

- Classical domain of nuclear science
- Many-body quantum problem: intellectual overlap to mesoscopic science – how to understand the world from simple building blocks

Nuclear processes in the universe

- Energy generation in stars, (explosive) nucleo-synthesis
- Properties of neutron stars, EOS of asymmetric nuclear matter

Tests of fundamental symmetries

 Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

FRIB Users Organization Over 1250 Users Ready for Science

- Users are organized as part of the independent FRIB Users Organization
 - FRIBUO has 1268 members (92 US Colleges and Universities, 10 National Laboratories, 58 countries) as of 2 October 2012
 - Chartered organization with an elected executive committee (Chair is Michael Smith, ORNL)
 - FRIBUO has 20 working groups on experimental equipment
 - 41 members from 21 states visited Capital Hill on 5 March 2012
- Science Advisory Committee
 - Review of equipment initiatives (Feb. 2011)
 - Review of FRIB Integrated Design (March 2012)

August 2011
Joint Users Meeting
284 participants

fribusers.org

FRIB Project at MSU Project of \$680M (\$585.5M DOE, \$94.5M MSU)

- Dec. 2008: DOE selects MSU to establish FRIB
- June 2009: DOE and MSU sign corresponding cooperative agreement
- Sept. 2010: CD-1 granted; conceptual design complete & preferred alternatives decided
- April 2012: Lehman Review, readiness to baseline

Michigan State University 57,000 people; 36 sq mi; \$1.8B annual revenue; 552 buildings

Site Layout: FRIB addition connects to existing NSCL building

Building Configuration

Final Design of Conventional Facilities Complete

View from Southeast

Ready for Civil Construction to Begin

 Site preparation activities complete; pilings for earth retention system being installed as long-lead procurement

Web cams at www.frib.msu.edu

Facility Layout

Accelerator Design & Requirements

- Delivers FRIB accelerator as part of a DOE-SC national user facility with high reliability & availability
- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400 kW
- Satisfy beam-on-target requirements
- Energy upgrade by filling vacant slots with 12 SRF cryomodules
- Maintain ISOL option
- Upgradable to multiuser simultaneous operation of light/heavy ions with addition of a light-ion injector

Experimental Systems Scope Defined and Unchanged since April

- Facility performance expectations
 - Rare isotope production with primary beams up to 400 kW, 200 MeV/u uranium
 - Fast, stopped and reaccelerated beam capability

• Experimental areas and scientific instrumentation for fast, stopped, and

reaccelerated beams

World-class science on day one

- Experimental Systems project scope
 - Production target facility
 - Fragment separator
- Non-TPC contributions to Experimental Systems
 - Beam stopping systems, reaccelerator, experimental areas, experimental equipment

Facility Layout

S. Peng, October 2012 EPICS Meeting @ Pohang, Slide 14

FRIB Driver Accelerator Layout

FRIB Resonators and Cryomodules: Beam Dynamics Specifications

Conventional Facility

Racks, cable tray, conduit arrangement How does tunnel look like

Controls Technical Scope

- Global systems
 - Global timing system
 - Machine protection system
 - Network and computers
- High level applications
 - Database
 - High level applications
 Console application
 - »Web application
 - Physics applications

- Low level controls
 - »Vacuum/Power Supply/RF
 - »Cryomodule & Cryoplant
 - »Front End/Ion Source/RFQ
 - **»Stripper**
- Personnel protection system
- Diagnostics support
- Conventional facility integration

Controls Scope Requirements Defined

- An integrated control system
 - Technically Integrated
 - No fence between ASD and ESD
- A large distributed control system based on EPICS framework
- User interfaces/tools with consistent look and feel
 - Remote supervisory control and data acquisition of devices/detectors
 - Integrated control room toolkit (e.g. snapshot/restore, alarm handler)
 - Integrated physics applications and model-based beam control
- Low level device control and process control
 - PLC, IOC and instrumentation
- 35 µs machine protection mitigation (10µs for MPS electronics)
- Global timing system distributes trigger, timestamp and real-time information facility-wide
- High-bandwidth/reliability network and computing platform to support control system operation
- Personnel Protection System to ensure safe operation
- Diagnostics high speed data acquisition
- High availability and long lifetime as a user facility

Control System Scale

- It is a large scale distributed control system
 - ~200m * 200m physical distribution
 - ~150 Computers/EPICS Input/Output Controllers (IOC)
 - ~100 Programmable Logic Controllers (PLC)
 - Thousands of network attached intelligent devices
 - » RF controller
 - » Power supply controller
 - » Vacuum gauge/pump controller
 - » Programmable logic controller
 - ~ 3000 network ports
 - >500 timing drop points
 - ~2000 MPS fast protection inputs
 - ~750 racks and more than 100 with controls devices

EVG/EVR + PTP

- PLC HIPROM module works
- Deploy with 900W project
- Looking for a PMC module for EVG to simplify the effort

EVG/EVR test platform works

Convergence process, PTP looks great

• Testing result : T_{offset} : master and slave time offset

6 nodes & 8 nodes Histogram

EVR core requirement

Function of FGPDB

FGPDB

FPS Topology

Tree topology

- Easy to implement
- Almost same delay for all end nodes
- Need 120.75MHz reference clock which is higher than system clock
- Poor message capacity
- Hard to extend

VS

Multi-Circle topology

- 80.5MHz Reference clock which is as same as system clock
- Easy to extend
- Rich message capacity
- Different delay for different end node
- Need a big master

Controls Network

Green-Core Switch, Red-Distribution Switch

RDB/Apps go well

- E-Traveler production version in field ©©©
- Naming convention in RDB ©©©
- E-log in field ©©©
- Lattice RDB ©©
- Stockbook FRIB version beta-release ②

Technical Status for Physics Applications

- Physics applications deliverables are identified and reviewed
- XAL is adopted and built
- The hardware representation and online model for electrostatic quads are added
- XAL configuration files for FRIB Linac and ReA3 are generated
- Benchmarking is going on against off line modeling tool

Low Level Control

- Allen Bradley PLC
 - Vacuum
 - Cryo
- UDP over Ethernet
 - LLRF
 - PS (To Be Designed)

- Under evaluation
- Debian/Ubuntu
- What is our RTOS?

RTOS: vxWorks or Linux-RT variants

Treaty point

In general everything from AD/DA,FPGA towards user will be handled by Controls, everything towards the detector will be handled by Diagnostics.

Test Set-Up

PPS

- Access Control
 - AB Guardlogix
 - SIL3 redundant with Compact Guardlogix
- ODH
 - Compact Guardlogix
 - Oxigrad .vs. PureAire
- Requirement tracking and process
 - Enterprise Architect

- Integrate with Conventional Facility
 - BACnet is agreed interface
- Controls role
 - Full Support: LCW
 - Interface with all signals
 - Interface with some signals
 - No interface

Wants to know more about FRIB

pengs@frib.msu.edu

Welcome to Michigan!

